Algorithms for Deterministic Incremental Dependency Parsing

نویسنده

  • Joakim Nivre
چکیده

Parsing algorithms that process the input from left to right and construct a single derivation have often been considered inadequate for natural language parsing because of the massive ambiguity typically found in natural language grammars. Nevertheless, it has been shown that such algorithms, combined with treebank-induced classifiers, can be used to build highly accurate disambiguating parsers, in particular for dependency-based syntactic representations. In this article, we first present a general framework for describing and analyzing algorithms for deterministic incremental dependency parsing, formalized as transition systems. We then describe and analyze two families of such algorithms: stack-based and list-based algorithms. In the former family, which is restricted to projective dependency structures, we describe an arc-eager and an arc-standard variant; in the latter family, we present a projective and a nonprojective variant. For each of the four algorithms, we give proofs of correctness and complexity. In addition, we perform an experimental evaluation of all algorithms in combination with SVM classifiers for predicting the next parsing action, using data from thirteen languages. We show that all four algorithms give competitive accuracy, although the non-projective list-based algorithm generally outperforms the projective algorithms for languages with a non-negligible proportion of non-projective constructions. However, the projective algorithms often produce comparable results when combined with the technique known as pseudo-projective parsing. The linear time complexity of the stack-based algorithms gives them an advantage with respect to efficiency both in learning and in parsing, but the projective list-based algorithm turns out to be equally efficient in practice. Moreover, when the projective algorithms are used to implement pseudo-projective parsing, they sometimes become less efficient in parsing (but not in learning) than the non-projective list-based algorithm. Although most of the algorithms have been partially described in the literature before, this is the first comprehensive analysis and evaluation of the algorithms within a unified framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incrementality In Deterministic Dependency Parsing

Deterministic dependency parsing is a robust and efficient approach to syntactic parsing of unrestricted natural language text. In this paper, we analyze its potential for incremental processing and conclude that strict incrementality is not achievable within this framework. However, we also show that it is possible to minimize the number of structures that require nonincremental processing by ...

متن کامل

A Puristic Approach for Joint Dependency Parsing and Semantic Role Labeling

We present a puristic approach for combining dependency parsing and semantic role labeling. In a first step, a data-driven strict incremental deterministic parser is used to compute a single syntactic dependency structure using a MEM trained on the syntactic part of the CoNLL 2008 training corpus. In a second step, a cascade of MEMs is used to identify predicates, and, for each found predicate,...

متن کامل

تأثیر ساخت‌واژه‌ها در تجزیه وابستگی زبان فارسی

Data-driven systems can be adapted to different languages and domains easily. Using this trend in dependency parsing was lead to introduce data-driven approaches. Existence of appreciate corpora that contain sentences and theirs associated dependency trees are the only pre-requirement in data-driven approaches. Despite obtaining high accurate results for dependency parsing task in English langu...

متن کامل

Ungreedy Methods for Chinese Deterministic Dependency Parsing

Deterministic dependency parsing has often been regarded as an efficient algorithm while its parsing accuracy is a little lower than the best results reported by more complex methods. In this paper, we compare deterministic dependency parsers with complex parsing methods such as generative and discriminative parsers on the standard data set of Penn Chinese Treebank. The results show that, for C...

متن کامل

Incremental Non-Projective Dependency Parsing

An open issue in data-driven dependency parsing is how to handle non-projective dependencies, which seem to be required by linguistically adequate representations, but which pose problems in parsing with respect to both accuracy and efficiency. Using data from five different languages, we evaluate an incremental deterministic parser that derives non-projective dependency structures in O(n2) tim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Linguistics

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2008